If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14^2+9^2=c^2
We move all terms to the left:
14^2+9^2-(c^2)=0
We add all the numbers together, and all the variables
-1c^2+277=0
a = -1; b = 0; c = +277;
Δ = b2-4ac
Δ = 02-4·(-1)·277
Δ = 1108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1108}=\sqrt{4*277}=\sqrt{4}*\sqrt{277}=2\sqrt{277}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{277}}{2*-1}=\frac{0-2\sqrt{277}}{-2} =-\frac{2\sqrt{277}}{-2} =-\frac{\sqrt{277}}{-1} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{277}}{2*-1}=\frac{0+2\sqrt{277}}{-2} =\frac{2\sqrt{277}}{-2} =\frac{\sqrt{277}}{-1} $
| 8x+44=10x–12 | | 20+75+x=180 | | 1/3(24r-66)=3r+43 | | x/5+8=10 | | 36=9b-18 | | -c/6÷12=-7 | | 6x+12=2x+4+4 | | 3=v-3 | | 7/n=14/18 | | 100=9b+1 | | 35+25+x=180 | | 3(2)^x-3+1=85 | | 14=3p-1 | | 7x7=11 | | e•7.4=6.9 | | b-(-2)=12 | | 1+3u=19 | | –9a=–5−10a | | 4w−5 =5 | | 3x-15+9-8x-4=0 | | X^x+x-30=0 | | h+15=3 | | -24=-2(x+19 | | 20=2*3.14*x | | 6(x+2)=2(x+2)+4 | | 32=-4/7x | | 4x-26=-46 | | 2x+75=105 | | 2=2x-4+10 | | 6x−2x11=−5 | | 6x−2x11=−5, | | x−−−-16=1 |